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The problem of estimating the number of components, and the other parameters ,  i n  a s  

f in i te  m i x t u r e  of probabili ty densit ies is formulated as a continuous m i x t u r e  estimation 5 
s 

problem. Representing the f in i te  mixture  as h = Sf(. ,e)@( e), w h e r e  0 changes only  on * 
a f in i te  number  of points,  i t  is shown that under fairly general conditions it is possible to 

r ep resen t  this mix tu re  as h = sf( .,e)g( e>de + S w h e r e  the e r r o r  S can be made 

arbitrarily smal l  by properly choosing g. It is f u r t h e r  shown tha t  this second 

representation is consistent w i th  the first one, by showing that the c.d.f. of g can be made 

to converge weakly to the t r u e  G. Estimators are proposed far g based a n  kernel 

es t imators  and l inear  programming methods. 
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1. INTRODUCTION 

Let X be a random variable whose observations X E ~ !  ( 6! denotes the real line) are 

distributed according to the mixture density 

The components of this mixture, f(. ,bj 1, j =  1 ,Z,... ,N are each members of a given family 

of densities, 5 ,  parameterized according to the real variable 8.  The mixing proportions 

Ai.&, J = l , 2  ,..., N are nmnegative and z h j =  1. 
.# 

Finite mixture distributions have turned out to be a suitable model for a large number 

of physical processes. In  their recent book, Titterington, Smith, andMakov ( 1955) 

mention a number of applications of the finite mix ture model. Our interest i n  the model 

arose from a problem in  remote sensing in which i t  was required to estimate the 

proportion (i.e., a mixing proportion i n  equation( 1 1) of an agricultural area that was 

planted to a given crop from satellite derived spectrometer measurements of the area. I n  

this problem not only were the mixing proportions of equation ( 1 unknown but the other 

parameters N, ej , j=  1,2 ,... ,N were also unknown. 

In the case where N i s  known, several authors have proposed estimation methods for 

determining the remaining parameters. Among these is the class of maximum likelihood 
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methods which contains the EM algorithm of Dempster, Laird, and Rubin ( 1977). It i s  

known (Zacks 1971 ) that when the model i s  specified, in this case N being given, the 

maximum likelihood estimator, under rather weak conditions , i s  consistent, i s  ’ 

asymptotically unbiased, and is an t!symptOtl~lly mlnimum variance estimator. 

However, when N i s  unknown these properties need not hold. Holding the number of 

samples observations fixed, Redner, Kitagawa, and Caberly ( 198 1 ) point out that the 

likelihood function evaluated at the maximum likelihood estimate (i 1 , i z ,  ... , i ~ ,  6 1 , 

02, ... ,8,, increases as N increases. This behavior has prompted the introduction of 

penalized maximum likelihood estimators. Redner, Kitagawa, and Coberly ( 1981 1, for 

example, applied such a penalized estimator based on the so-called AIC, which was 

original ly introduced by Akaike ( 1973, 1977). 

If N i s  believed to be a certain value, say NO, then one could presumably test the nul l  

hypothesis that N=NO against some alternative. There have been a number of proposed 

statistical tests of this kind. The hook by Titterington, Smith, and Makov ( 1958) has a 

good summary of this approach. 

Our approach for determining N, as well as the other parameters in the mixture, uses 

an integral equation representation of the f ini te mixture. This representation has the 

form 

h(x) = .f f(x,0)g( 0>d0 + 6 ( ~ )  .................. (2 )  

where the e r ro r  function, 6, can be made Small ( in norm) by  an appropiate choice for g. 

Given h, the function g can be chosen so that i t  i s  a density function having N modes and 

high density on small intervals that contain the true parameter values 8 1 , 82, ... ,ON. 
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Moveover, the cumulative distribution related tog  w i l l  approximate a distribution w i th  

jumps at these &parameter values and whose jump sizes are h 1 ,  h 2 ,  .,. ,AN. Thus, the 

determination of N, h j  ,0j , j= 1 ,2, ... , N depend only on the determination of a single 

function, g. When h i s  unknown, but can be estimated from the data, then the problem i s  

to estimate g by methods which tend to preserve the above desired characteristics. 

This approach bears some s iml lar i ty  to the one proposed by Medgyessy ( 1977) in 

which a test function i s  derived from the mixture and the graph of the test function i s  

more infromative about the mixture parameter values than i s  the mixture itself. In 

particular the graph of the test function should have N narrow peaks that are much more 

pronounced than any peaks that may be present i n  h. The structure of the test function 

thus reveals the number of components i n  the mixture and may reveal other information 

eonzerning the other parameters. i n  our case 9 would be representative of mecgyessy’s 

test function. 

We w i l l  begin our discussion of finite mixtures by f i r s t  considering the case where the 

parameter , 8, i s  a translation parameter, and then we w i l l  consider the more general 

situation in  which 8 i s  not necessarily a translation parameter. In  both cases certain 

convergence results w i l l  be presented which w i l l  establish the consistency between the 

finite mixture and the integral equation representation. We w i l l  conclude by proposing 

estimators of the 9-function and examine some of the properties of these estimators using 

numerical simulations. 

2. INTEGRAL EQUATION REPRESENTATION 

We can wr i te  the f ini te mix ture of equation ( 1 as 
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h( x )  = Sf( x,B)dG( 0) ..................... (3)  

where G i s  a cumulative distribution function (c.d.f.) that i s  a step function w i th  i t s  

discontinuities at the points 81 . e2, ... ,8N and where G( e ) = O  for 9<81 and G( 0)=1 for 

@)€IN. We w i l l  assume that f is a continuous function on (-m,m)xA where A i s  a closed 

interval containing the set { 8 1 . 82, ... , 0 ~ }  and that f(. ,e) i s  a density function for any 

e a  

The family t of a l l  c.d.f.'s G induces, through the kernel f, a femily of mixtures X. If 

given hex, there exists a unique GEG,  then X w i l l  be called identifiable (Teicher 1963). 

In this paper we w i l l  deal only w i th  identifiable families. 

We begin by considering the case where 0 i s  a translation parameter. In this case X i s  

the family of a l l  mixtures that can be generated frcm translates of some given density f. 

Any heH has the form 

h(x) = Sf(x-e)dG( 8) ................... (4 )  

Yakowitz and Spragins ( 1963) prove that H i s  identifiable; however, i t i s  interesting to 

note that identif iabil i ty for this case can be easily deduced from the Carathec~iory 

trigonometric moment theorem (Grenander andSzecp 1958, pages 56-61 ). Indeed, 

letting h, I denote the Fourier transform of h , f  rsspectlvely, It follows from equatlon ( 4 )  

that h(w)/f( o )  = C hj exp( iwe. ) where the summation goes from 1 to N. By the J 

Caratheoclory theorem this i s  a unique representation for any collection of values Uk, 

k= I . 2, ... ,N for WhICh f(Wk)*O. 

To obtain the integral equation representation for this case, we convolve h in equation 
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(4 )  with a density function t mncentratedon an interval ( - € , E ) ,  00, to obtain 

(h*t)(x) = J f(x-z)gt(Z)dz ....................(S) 

where 

3t (Z> = J t(Z-B)dG( 6) ................... (6) 

Thus 

With6(x) = h(x)  - (h*t)(x) .  Letting II.II denote thesupremem normland nating that h 

i s  a continuous density , 

as E + 0. This implies that the c.d.f. Gt of gt converges weakly to G. 

Since 1181 I + 0 and since Gt + G weakly, we w i l l  say that our integral equation 

representation, equation (7), is  consistent with the f in i te mixture representation given 

by equation ( 4). It follows also that 

gt(Z) = ZAj t(z-6 j )  .................... (8) 

and so 91 is a mixture density wi th  the same parameter values as h; but, by choosing t to 

be a unimodal density concentrated a t  0, the graph of gt is  generally more revealing than 
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i s  the graph of h. In fact h can be unimodal whi le gt can have N modes at the points 8 , 

82, ... ,eN. 

In the general case where 0 is not necessarily a translation parameter, we can proceed 

in the following way. Consider the functions t(. ,Oj ) j = 1,2, ... ,N where each 

t(. ,8j 1 i s  a density function concentrated on a small interval that contains the t rue 

parameter value 8j in i t s  interior. Define 

hN( X )  = J f(X,9) t i  8,ej ) dB ..................... (3)  

Since h can be wri t ten as 

h ( x )  = x h j  Jf(x,B;)  t(8,8j)d9 

we have 

Ilh-hNlI 5 EA; s s u p x  If(x,8) - f(x,ej >I t;e,Oi)de 

Since f(.,e> i s  a continuous density function for a l l  &A, we can make Ifh-hHII 

a rb i t ra r l y  small by forcing each density function t( I ,0j 1 to be increasingly more 

concentrated on Sj , Le., ietting the interval support of t( . ,ej ) approach zero i n  size. 

Since the parameter values O j  , j =  1,2, ... ,N are not known, we can not choose the 

1(. ,6j )-functions directly. Instead, we w i l l  consider a s,q 0 uence of normalized 5-spline 

functions of order 2, or greater, defined over equally spaced knots that parti?ion the 

interval A. Since the support for  the splines overlap, any given 0j w i l l  be contained in 



the inter ior  of the support for  some B-spline function. For such a set of B-splines. 

(Bk, k= 1,2, ... ,M} define 

By  letting M +a i t  isclear,  that for  thiscase, we w i l l  also have Ilh-hMIl +O, providedof 

course that for each choice of M we pick theac-values properly. In the next section we 
I. 

w i l l  propcze B l icear programming approach for computing these ak-valcres 

By letting 

gM(e) = ak B ~ (  e) ...................... ( 1 0 )  

where the summation goes from 1 to  M, we have 

t d x )  = Jt f(x,e) g,.,(e) de + sFl(x) ............. ( 1 I )  

where 8~ = h-hM. To establish that this representation, in equation ( 1 1 1, is consistent 

with the one of equation (31, i t  remains to show that the c.d.f. of the density gw weakly 

converges :a G. 

7heurem. Let X be identifiable and let h be defined according to equation ( 3). For M 

= I 2 ,  ... define GM to be the c.6.f. corresponding io gi-, (where gM is defimd according to 

equation ( lo)). Define h y  as 

y.,w = f,i(x,e) g,.,ie) d e  

If Ilh-hmll 7 0 (11 + a> then GW 7 0  weakly. 

Prouf: Denote a linear functional on C(A) as L. When L is associated with some given 
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c.d.f., F , denote it by .I?,(. ,F) ( Le., L(. ,F) = .f . dF). F i rs t  note that C(A) i s  separable and 

(e.g., from the Riez representation theorm) Ill(. ,GM)II = 1 for  a l l  M. Thus (Kolmogorw 

and Formin 1957, p. 94) the sequence (l( ,,GH)), or any subsequence of that sequence, 

contains a weakly convergent subsequence. Thus we can f ind a subsequence (HI) so that 

A( qlGrlt)  + L( q) for any wEC(A). By the Riez representation theorem d(q) = I q dF and 

since L( 1 .GM1) = 1 for al l  M', F i s  a c.d.f. (Feller 197 1 , p. 25 1 1. Since for any x,  

f(x,.)EC(A) andL(f(x,.),GMl) + t(f(x,.),G), by the identif iabil i ty of If i t  must be that F 

= 0. To complete the proof simply note that the above argument implies that 

limsupl(q,Gy)) = liminf(L(q,Gy?)) = l(q,G). 

3. ESTIMATORS OF g 

Given ?he f ini te mixture representation 

h(x) = f( x,0)g( 8)d0 + S(X)  .................. (2') 

we now tu rn  to the problem of estimating9 frcm an i i d  sample X 1 I Xz, .., , Xn where each 

X i  i s  distributed according to the mixturedensity h. 

Our pr imary purpose for estimating g is  to obtain an estimate of N i n  equation ( 1 ). As 

discussed i n  the Intrcduction, our estimate of N wil l  be based on the number of 

"proncuned" peaks i n  the estimatedgraphof g. Also,.wi?h reference to equation ( 11, the 

location of each peak (the mode) can be taken as an estimate of a 0j -value; and, the size of 

each jEmp i n  the c.d.f. corresponding to the estimated g about a O j  -value can be taken as an 
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estimate of the hj -value. All  of these estimates are subjective and depent upon a visual 

inspection of the density or c.d.f. graph. 

A possible approach for estimating g would be to first estimate h, from the given 

sample, X 1 , X2, ,.. , Xn, and then, calling 6 our estimate of h, minimize 

11 6 -  Sf(.,@) g(8) de I lkwithrespecttog. Here11.llkissomenormI whichmaynotbe 

the supremum norm considered earlier. Since the family {f(. ,€I); &A} i s  equicontinuous 

and uniformly bounded, the operator induced by the kernel f i s  compect (Lusternik and 

Sobolev 196 1 1. The inverse operator, i f  it exists, w i l l  therefore be discontinuous. This 

means that any numerical solution for g can be very sensitive to small changes i n  6. I n  

Tikhonov’s regulerization method (Tikhonov and Arsenin 1977), this discontinuity 

problem i s  addressed by appropiately constraining the solution for g by a linear 

combination of the L2 norms of g and i t s  derivatives. 

Rather than use the general representation of equation (2’) we w i l l  use the specific 

representations of equations ( 7 )  and ( 1 1 ) .  That is, we w i l l  estimate gt for a suitable 

choice o f t  and IgH for a suitable choice of a spline series. In  the case of gt it i s  possibe to 

avoid the above mentioned discontinuity problem by deriving an operator from f that i s  

continuous and,upon operating on h, w i l l  give gt. We now discuss this approach. 

Rewriting equation (5 )  i n  terms of Fourier transforms gives at a point w 

gt(w) = ( t ( W ) / f ( w ) )  h(W) ..................... 12) 

Let tf = t/f. Then (assuming tf is  integrable) 
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Given our above random sample X 1 , X2, ... , Xn an (unbiased) estimator for gt i s  

it( e> = ( 1 /n) tf( e-xi) ..................... ( 13)  

In the next secion we w i l l  consider this estimator for  the case where f i s  a gamma 

density function i.e. f( x>  = ( 1 /m!ym+ ) xm exp( -x/y) for x Z 0  and f( x)=O for x ~ 0 .  

For this case equation ( 12) beames 

q(o)  = ( (  1 +iwyIm+ ' t ( w ) )  h(w) 

If we choose t so that i t has m+ I derivatives and the m derivatives as well  as t vanish at 

-0 and 03, then 

tr(x) = ( 1 + 1 ( (m+  1 )!/k!(m+ 1-k)!) ykDk) t (x)  ..... ( 14) 

where the summation i s  over k from 1 tom+ 1 and where D i s  the standard derivative 

operator ( D  = d/dx). Notice that the gamma function leads to an inverse operator that i s  a 

linear combination of derivative operators, D k , k= 1,2, ... ,m+ 1 and is therefore 

discontinuous. The ro le  o f t ,  i n  this case, is to transform this discontinuous operator to 3 

continuous ofie. 

For the more general case where 8 is not necessarily a translation parameter we tu rn  

to the problem of estimating gp as given by equation ( 10). In  this case we propose to 

minimize 116 - f f(. ,e)gM( e)dell1 with respect to gM subject to certain constraints on 

gM,WhiCh we w i l l  discuss i n  a moment. Here 1 1 . 1 1  1 i s  the 1 1  norm. Given the i i d  sample 

X , X , ... , Xn (where recall each X i  i s  distributed according to the mixture h), 6 i s  
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a s  - .  

defined as the histogram, on the partit ion xocx 1 < ... <Xm,  

&(x j )  = n j /n  

where nj i s  the number of observations on X l  , X2, ... , Xn fal l  i n  (XI- 1 ,XJ 1 for j =  1,2, ... 

, m. The kernel, f, is also evaluated at these partit ion points. 

This minimization w i l l  be expressed as a linear programming problem, viz, 

minimize: A ,  + A2 + ...+ Am 

subject to: for j=  1,2, ... ,m, k= 1,2, ... ,M, 

-Aj 2 h ( X j  1 - J f ( X j  ,8)gm(8)d8SAj 

The constraints i n  this case force the resulting estimate of OM, -w &, to be a density 

function. The solution of the linear programming problem i s  theak-values that define 

&, which we w i l l  call a 1 , q, .,. ,aM. 

Since the sequence (gM( 0)) does not converge; but, instead the smoothed sequence 

( sq( 8!qM( 8)de) converges for a l l  q&A), it would appear that we should also observe 

some smoothed graph of &. In particular i f  (Cf. equation ( IO)) 

i ~ ( 8 )  = x i k B k ( 8 )  ................... ( 15) 

where BI. i s  a B-spline of order r then convolving 

give a series expansion i n  terms of 6-splines of order r + s  with the same;-values. This 

with a 8-spline of  order s would 
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is in fact what was done i n  the numerical studies discussed in  the next section. The 

original expansion is  in terms of second order B-splines and the smooth version is  based 

on 8-splines of order four. 

Notice that this estimation approach i s  based on an 1 norm as apposed to the supremum 

norm used in the theorem. Since h and h y  are unifarmly continuous, and since the 

histogram w i l l  converge almost surely to h ,  it i s  easily zeen that given E>O it i s  possible 

toalmostsurelydominate !!h-hMj( by 116- 

partit ion XO<X .: ... C L ~ .  

f(.,€l)gM(e)d€I((1  for afineenough 

4. NUFtERlCAL EXAMPLE 

i ne first set c f  examples i.s based on a mixture of Vivo translated gamma density 
-. 

functions of the form 

where $(x)= 1 for xZ(3 and 0 otherwise and where y=. 1,  The estimator of gt, given in  

equation ( 131, was computed for a sample of size 1000 from this mixture. In  equation 

( 13) the function tf was computed according to equation ( 14) taking the function t to be a 

Tourth order B-spline wi th  knots pleced at intervals of length A=. I .  The function tf 

therefore has the form 

tf(  0)  = tq( e )  + ( 2y/A)( t3(e)-t3( 0-A))  
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where tk, k=2,3,4 are second, third, and fourth order B-splines respectively. The 

expressions for these 6-splines can be found in Schumaker ( 198 1 ). 

Figures 1-3 show the estimated mixture densities and the corresponding it e- =timated 

densities. In these figures h was estimated using a kernel estimator where the kernel was 

a th i rd  order B-spiine wi th  knots placed on intervals of length . 1. 

In the f i r s t  f igure the mixture consists of two components wi th  8 1 =.2 and 07 =.3. The - 

spacing appears to be too close to resolve the Components of the mixture by these methods 

as can be seen from the tinimodal form of g+. As the components become more separated. 

5s shown in Figures 2 and 3 the components show up. I n  Figure 2 i t  displays two modes 

even though the estimated h s t i l l  appears to have no inflections. When 8 12.2 and 82=.4, 

fn Figure 3, ihe separation of the components can be seen in  the mixture and i s  even more 

pronounced i n  the graph of it, 

The next .;et of examples i s  based on a mixture of two normal densities wi th  different 

variances but the Eame means. I n  !his me 

!$ 
t?(x) = I / z ) (  1/(2ToiL? -)exp-(( 1/2)x'/aj') 

As indicated i n  the previous section a linear ~rogramming approach was used to estimate 

91.1. Tne actual form of this estimator is given i n  equation ( 15) wi th  M=20. 

Figures 4-6 shcw the hktcgrams of h calctilated from 1000 observations on this 

'7 mix turewi thace i i s izeo f  .4:7 i n  therangeof -5 to5 .  Ineachcaseul2=1; bt i t ,aZL=2 



in Figure 4, ~ 2 ~ = 2 . 5  in Figure 5, a n d c ~ ~ = 3  In Ftgure 6. The corespondlng graphs of 

& are also given in the figures. Twenty 6-splines were used to compute & on equally 

spaced knots on the interval (.O 1 ,5>. 

The graph of j&, in Figure 4, suggests that two components may be present in  the 

mixture;but, s ime the peaks are so disproportionate in size the smaller peak may be an 

artifact of noise. Figures 5 and 6, however, show that components whose variances differ 

by 1.5 or more could be distinguished. 

Both sets of figures suggest that the graphs of it or iM reveal the number of 

components i n  the mixture better than the other parameters. When components are not 

well  separated any distinguishable peaks in  the graphs of gt and &, tend to be 

disproportionate i n  size and therefore any estimate of the mixing prcportions that cculd be 

derived by examining the c.d.f. of these functions would be considerably i n  er ror .  The 

estimates of the location or scale parameters that could be derived by examining the 

location of the peaks are somewhat better. b 

5. CONCLUDING REMARKS 

We have shown that i n  certain cases i t  i s  possibe to approximate a f ini te mixture as a 

continuous mixture, i.e., a mix ture in which the mixing function is  a continuous density 

function. We have further proposed methods for estimating this mixing function; and, 

from a few numerical examples have observed the behavor of the estimates. Our purpose 

was to develop a graphical approach for determining the number of components i n  the 

mixture and to a lesser extent to determine the other parameters in the mixture. 
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By approximating a finite mixture with a continuous mixture, one could possible loose 

uniqueness i n  certain cases. It i s  well  known, for example that a f ini te mixture of 

normals i n  which the means and variances are allowed to vary i s  an identifiable mixture 

(Teicher 1963) c r  (Yakowitz and Spragins 1968). However, the same i s  not t rue of a 

continuous mixture of normals when both the means and variances vary, as was pointed 

out by Teicher ( 1960). The extent to which these multivariate cases l i m i t  our approach 

needs to De considered. 
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